Lehigh Valley Health
Network:
Department of Pulmonary &
Critical Care Medicine

Metformin & Gastroenteritis: A Lethal Combination

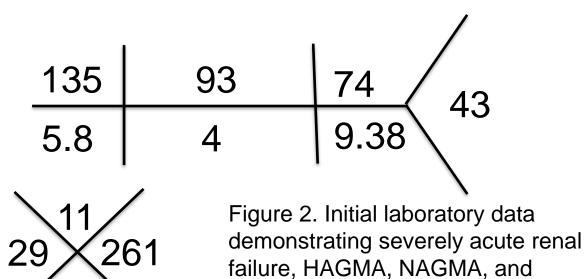
Dylan Soller DO, Jonathan DallaRosa MD, Alaynna Kears DO, Nira Kakumanu MD

Introduction

- Metformin is the most common standalone drug prescribed for Type 2 Diabetes Mellitus
- Metformin is excreted in the proximal tubules of the kidney without being metabolized
- Lactic acid accumulation can occur when taking metformin, as it inhibits cellular respiration and hepatic clearance of lactate, and acts as a slightly negative inotrope
- Metformin-associated lactic acidosis (MALA) is a rare but potentially fatal complication of metformin usage

Presentation

- 60 year-old female was found down at home for unknown duration
- Last seen one day prior when working at church
- Had treatment for a UTI 1 week prior to presentation
- Arrived to ER via EMS alert, responsive, and protecting airway
- (+): nausea, severe vomiting & diarrhea over the past 2-3 days, blurry vision with unclear onset
- (-): Headache, shortness of breath, chest pain, muscle aches, toxic substance ingestion
- PMHx: Type 2 Diabetes on insulin and metformin
- Social Hx: non-smoker, non-drinker, no illicit drug use
- Profoundly hypotensive, hypothermic, hypoglycemic


Figure 1. Metformin's chemical structure lends towards lipophilic properties.

Initial Work-Up

- Trauma Scans negative for acute fracture
- Serum Osmolality: 338
- Calculated Osmolar Gap: >35
- Volatile Panel, Salicylate, Acetaminophen: undetected
- CK: 290
- TSH: 0.8
- Lactate: 22→23→27

NH

- Anion Gap: 38
- CVC and arterial line placed

metabolic alkalosis.

ARTERIAL	<6.94 ¥	
рН	<20 ▼	
pCO2	188 ^	
pO2	Unable to perfo	
HCO3	Unable to perfo	_
TCO2	100	-
sO2		4
Base Deficit	Unable to perfo	
Base Excess	Unable to perfo	
	Figure 3. Initial ABG	

Figure 3. Initial ABG data demonstrating severe Acidosis

Treatment

- IVF resuscitation with rapidly escalating vasopressor requirements
- Active rewarming and infectious work-up initiated; broad-spectrum antibiotics administered
- NaHCO3 solution and crystalloid initiated given severe NAGMA with rhabdomyolysis
- Toxicology consulted: unlikely toxic-alcohol ingestion
- Nephrology consulted: CRRT initiated
- Bedside echocardiogram: hyperdynamic with normal atrial pressures
- Worsening mentation → proceeded with intubation
- Added Giapreza, stress-dose steroids, and methylene blue
- Unable to augment blood pressure and with rapidly escalating lactic acidosis, decision made to pursue comfort measures

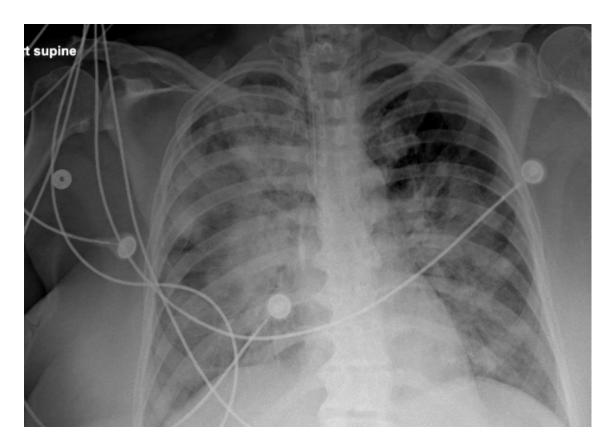


Figure 4. CXR postintubation revealing bilateral pulmonary infiltrates, not present upon arrival.

Discussion

- Metformin is not bound by plasma proteins, which can lead to toxic build-up in lipoid-rich tissue
- MALA typically presents in the setting of acute renal failure and rapidly rising lactates
- The degree of acidosis is often out-of-proportion to serum Metformin levels
- You are more likely to develop MALA if you have known hepatorenal disease; however, anyone can develop this condition when suffering from an acute decrease in renal perfusion
- Neither lactate, creatinine, or metformin levels predict patient outcome with this condition
- If initiated early enough, hemodialysis can have some success; prognosis is much poorer if derangements other than renal failure and lactic acidosis are present
- Return of renal function is the greatest prognostic indicator in many of these patients

Conclusion

 Patients on metformin who experience significant gastroenteritis or similar symptoms should be instructed to stop metformin immediately and resume only when directed to do so

References

Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996 May;30(5):359-71. doi: 10.2165/00003088-199630050-00003. PMID 8743335.

- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022024s000chemr.pdf
- Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574–57

Gan SC, Barr J, Arieff Al, Pearl RG. Biguanide-associated lactic acidosis. Case report and review of the literature. Arch Intern Med. 1992;152(11 36.

• Lalau JD, Lacroix C, Compagnon P, de Cagny B, Rigaud JP, Bleichner G, Chauveau P, Dulbecco P, Guérin C, Haegy JM, et al. Role of metformin accumulation in metformin-associated lactic acidosis. Diabetes Care. 1995:18(6):779–784.

• Umeda, Takehide, et al. "Metformin-Associated Lactic Acidosis: A Case Report." *Drug Safety - Case Reports*, Springer International Publishing, 9 Feb 2018, www.ncbi.nlm.nih.gov/pmc/articles/PMC5807253/.

Blough, Britton, et al. "Metformin-Induced Lactic Acidosis with Emphasis on the Anion Gap." Proceedings (Baylor University. Medical Center), Baylor Health Care System, Jan. 2015, www.ncbi.nlm.nih.gov/pmc/articles/PMC4264704/#B14.